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ABSTRACT

Across much of the Northern Hemisphere, Climate Forecast System forecasts made earlier in the winter

(e.g., on 1 January) are found to have more snow water equivalent (SWE) in April–June than forecasts made

later (e.g., on 1 April); furthermore, later forecasts tend to predict earlier snowmelt than earlier forecasts. As a

result, other forecasted model quantities (e.g., soil moisture in April–June) show systematic differences de-

pendent on the forecast lead time. Notably, earlier forecasts predict much colder near-surface air temperatures

in April–June than later forecasts. Although the later forecasts of temperature are more accurate, earlier

forecasts of SWE are more realistic, suggesting that the improvement in temperature forecasts occurs for the

wrong reasons. Thus, this study highlights the need to improve atmospheric processes in the model (e.g., ra-

diative transfer, turbulence) thatwould cause cold biaseswhen amore realistic amount of snow is on the ground.

Furthermore, SWE differences in earlier versus later forecasts are found to much more strongly affect April–

June temperature forecasts than the sea surface temperature differences over different regions, suggesting the

major role of snowpack in seasonal prediction during the spring–summer transition over snowy regions.

1. Introduction

Snow has a large influence on the energy and water

cycles between the land and atmosphere. For example, it

influences the reflectance of solar radiation, insulation

of the soil from the atmosphere, infrared radiation

emissivity, and surface roughness. These effects can be

felt even after snowmelt, providing a potential source of

predictability at seasonal and subseasonal time scales

(Peings et al. 2011; Orsolini et al. 2013). Not only does

the timing and magnitude of snowmelt influence

streamflow, soil moisture, and vegetation health well

into the summer, but there can be a link between re-

gional snow cover and subsequent climate patterns as

well. For example, some studies have found linkages

between snow cover and summertime rainfall (e.g., Hahn

and Shukla 1976; Gutzler and Preston 1997). In addition,

numerous studies have pointed out the potential impacts

of snow in the Arctic on atmospheric circulation, both

locally (over the snow cover) and regionally (e.g., Cohen

and Entekhabi 1999; Clark and Serreze 2000; Yang et al.

2002; Gong et al. 2004), and declining snow cover over

high latitudes in the Northern Hemisphere contributes to

amplification of warming over the Arctic and can cause

weather changes even in the midlatitudes (Francis et al.

2009; Cohen et al. 2014).

Despite this importance, the quantification of snow

remains a challenge for globalmodeling systems (Broxton

et al. 2016b;Mudryk et al. 2015), especially for operational

weather and climate models, such as those used at the

National Centers for Environmental Prediction (NCEP).

In particular, the amount of SWE initialized in forecast

models at NCEP has been found to be generally too low

(Dawson et al. 2016). This is because the snow initializa-

tion uses data that has too shallow snow, as well as un-

realistic assumptions about snow density, which combine

to give initialized SWE estimates that are far too low

(Dawson et al. 2016; see section 3a below for a brief

summary of these findings). Poor snow initialization

presents a challenge for seasonal forecasting, in particular,

because the effects of poor snow initialization can last

through the forecast period: if snow is initialized to be too

shallow, it often remains too shallow formuch the forecast
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period. Furthermore, shallow snowpack tends to melt

much more quickly than deep snowpack, so forecasts that

have too little snow tend to have too early melt.

Another consideration is that initialized snow amount,

for a particular date, is often different than the modeled

snow amount that is generated by an earlier forecast. This

means that forecasts made at different times will be dif-

ferent. Normally, this would not be a problem as the

initialization of forecast models through assimilation of

new data typically means that later forecasts (i.e., those

with shorter lead times) are more accurate than earlier

forecasts (i.e., thosewith longer lead times). This is true of

both short-term forecasts (Krishnamurti et al. 1994) as

well as seasonal forecasts (Chen et al. 1995; Koster et al.

2004; Douville 2010). However, in the case of snow, poor

initialization means that later forecasts do not necessarily

predict SWE better than earlier forecasts. In fact, the

opposite may be true if the initialized snow amount is

worse than what the forecast model produces.

The question is this: Howmuch does this inconsistency

affect other forecast model quantities? The transition to

snow-free conditions, in particular, can have dramatic

affects for quantities that are sensitive to the reflectance

of incoming radiation. Changes in albedo associated with

melting snow directly affects radiative transfer at the

surface, as more incoming solar radiation is absorbed by

snow-free surfaces. This alters the surface energy balance

and affects the transfer of sensible and latent heating

between the surface and the atmosphere, leading to

changes in near-surface air temperature (Mote 2008;

Betts et al. 2014). The transition from snow-covered to

snow-free conditions can also affect the transfer of energy

to the subsurface. Because snow is a good insulator, a

thick snowpack can keep the wintertime soil temperature

significantly warmer than it would otherwise be without

snow (Decker et al. 2003). Finally, snowmelt provides a

substantial hydrologic input and can affect surface runoff

and soil moisture for months. Any inconsistency among

forecasts involving snow may lead to inconsistencies for

these other variables as well.

In this study, we investigate the effects of the low bias

of the SWE initialization on other quantities in seasonal

forecasts using NCEP’s Climate Forecast System (CFS;

Saha et al. 2006; 2014). Our goal is to use the extensive

dataset of existing CFS output to demonstrate how poor

snow initialization affects subsequent forecasts. Specifi-

cally, we use 28 yr of retrospective forecasts generated

using the same forecast system as version 2 of the oper-

ational CFS (CFSv2; Saha et al. 2014). We also seek to

isolate the impact of snow from potential impacts from

other factors (e.g., the ocean), which will motivate future

sensitivity tests using CFS with different initial snow

conditions.

2. Data and methods

CFSv2 is a coupled land–atmosphere–ocean–sea ice

model that uses the NCEP Global Forecast System at-

mospheric model, the Geophysical Fluid Dynamics

Laboratory Modular Ocean Model (version 4), a two-

layer sea ice model, and the Noah land model. The at-

mospheric model in CFS has a resolution of T126

(;0.93758). CFSv2 (which has been operational since

2011) supersedes an older version of CFS (version 1),

which has been operational since 2004. Here, we use the

hindcasts that are generated as part of the CFS Re-

analysis and Reforecasts (CFS-RR). These hindcasts

(which span from 1981 to 2009) are generated with the

same model that is used in the operational CFSv2.

Initial conditions for the CFS-RR hindcasts are pro-

vided by the CFS Reanalysis (CFS-R; Saha et al. 2010).

CFS-R also uses a global coupled land–atmosphere–

ocean–sea ice model, although the model resolution is

higher (T382;;38km). The sea ice and ocean models in

CFS-R and CFS-RR are identical, but there are a few

minor differences between the land and especially at-

mospheric models between CFS-R and CFS-RR (Saha

et al. 2014). The similarities between CFS-R and CFSv2

(and hence CFS-RR) are by design and are meant to

make theCFS-R as consistent withCFSv2 (andCFS-RR)

as possible (Saha et al. 2014).

Despite the similarities between CFS-R and CFS-RR,

the fact that CFS-R incorporates observational data

leads to unavoidable inconsistencies with CFS-RR.

Importantly, for this study, CFS-R incorporates exter-

nal gridded snow data from the Air Force Weather

Agency (AFWA; Air Force Weather Agency 2013).

AFWA snow depth data are used to constrain the CFS-R

snow depth analysis: each day, the CFS snow depth

data are constrained to fall within a range of one-half

to twice the AFWA data (Saha et al. 2010). Then, snow

is removed or added using a snow cover mask (again,

derived from external data). Furthermore, this snow

depth analysis is converted to SWE analysis using

an unrealistically low global constant snow density

(100kgm23). This method of snow data assimilation has

been shown to produce SWE estimates that are far too

low (Dawson et al. 2016), and indeed, CFS-R depicts less

snow than many other major modeling systems (Broxton

et al. 2016b). Therefore, the SWE in CFS-R is much less

than that which would be predicted by a CFSv2 CFS-RR

forecast.

Here, we use 28 yr of CFS-RR data (from 1 October

1982 to 30 September 2010) to assess the sensitivity of

CFSv2 forecasts to SWE being consistently initialized

too low through the winter. It includes four CFS-RR

reforecasts every five days (i.e., 0000, 0600, 1200, and
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1800 UTC forecasts are available from 1 January,

6 January, etc.) for the entire period, and the archived

output from each model forecast contains 6-hourly time

series of model variables going out to 9 months. In this

study, we only obtained the first available day of model

forecasts for each month from January to April (those

made on 1 January, 5 February, 2 March, and 1 April).

We obtained a large number of variables for each

forecast, but after extensive analysis this study focuses

on SWE, the difference between incoming and outgoing

shortwave radiation, sensible heat (SH) flux, latent heat

(LH) flux, soil moisture (from the top 10 cm of soil), sea

surface temperatures (SSTs), 2-m air temperature

(T2m), sea level pressure (SLP), 500-hPa geopotential

height (Z500), and precipitation rate (PPT).

For each year, the forecasts from different months

are compared to each other by differencing the en-

semble of the first four forecasts from the different

months (i.e., the average of the four 1 January forecasts

are compared with the average of the four 1 April

forecasts). In many cases, we focus on the 3-month

forecast period that captures snowmelt and the period

immediately subsequent to snowmelt in the high

northern latitudes (April–June). That is, the April–

June period from the 1 April forecasts are compared

with the April–June period from the 1 January fore-

casts. For the purposes of this study, focusing on this

extended period during snowmelt is advantageous for

two reasons. First, this is when the effects of poor snow

initialization on other model quantities are maximized

(i.e., during snowmelt; Xu and Dirmeyer 2011). Sec-

ond, the integration period is long enough that the

effects of atmospheric memory (of ;2 weeks) have

relatively little influence on the forecasts for the entire

period. This makes it simpler to isolate whether the

effects on other model variables are caused by snow

initialization, atmospheric state, or ocean state. We

make use of all 28 yr of CFS reforecasts by either taking

the average of the 28 yr of CFS-RR data (i.e., finding

the difference between the average of a particular

variable for April–June from the 1 April forecasts and

the average of that variable for April–June from the

1 January forecasts) or by finding how the interannual

variability of a particular model variable correlates to

another.

In addition to the CFS-RR data, this study also uses

gridded observation-based SWE and near-surface air

temperature data as reference datasets. The SWE data

(Broxton et al. 2016a) are based on high-quality PRISM

precipitation and temperature data over the contermi-

nous United States (CONUS). It uses an empirical

temperature-index model (derived from in situ obser-

vations) combined with thousands of SWE and snow

depth observations from the National Weather Service

Cooperative Observer (COOP) network and the Na-

tional Resource Conservation Service Snow Telemetry

(SNOTEL) network. The dataset is generated by in-

terpolating differences in SWE, normalized by snowfall

minus snow ablation, between the station observations

and the model estimates. Our data have been tested

extensively; most notably, they have been shown to

perform well in three significant respects. First, when

predicting SWE data between points, our method of

interpolation of normalized SWE has been shown to

produce much smaller errors than other interpolation

methods using SWE itself (Broxton et al. 2016a). In

addition, our method is very robust, as interpolation

errors are similar regardless of whether a small or large

number of stations are used for the interpolation

(Broxton et al. 2016a). This is also true of the gridded

SWE estimates produced from the interpolation, which

are very similar regardless of the number stations used

(Broxton et al. 2016b). Finally, the coverage of snow in

our SWE data closely matches the Interactive Multi-

sensor Snow and IceMapping System (IMS) snow cover

data, which are largely based on independent satellite

data (Broxton et al. 2016b).

For CFS evaluations, the gridded temperature data

come from the global hourly 0.58 land surface air tem-

perature dataset of Wang and Zeng (2013) by merging

the Modern-Era Retrospective Analysis for Research

(MERRA) reanalysis data with the station-based Cli-

matic Research Unit (CRU) data. This dataset is con-

structed by spatially downscaling the hourly MERRA

data to 0.58 resolution, and then bias correcting the data

such that monthly maximum and minimum tempera-

tures match the CRU data.

Note that the resolution of these data products, 2.5

arcminutes for the Broxton et al. (2016a) and 0.58 for the
Wang and Zeng (2013) data, is different than the CFS

data, and even among the CFS data the resolution of

different model outputs varies according to whether it is

output from the land model component, atmospheric

component, or the ocean model component of CFS. The

land model output (in this case, SWE, incoming and

outgoing shortwave radiation, SH, LH, and T2m) has a

resolution of ;(0.948 3 0.958), the output of the atmo-

spheric model has a resolution of 18 3 18, and the output

of the ocean model (in this case, SST) has a resolution of

0.58 3 0.58. For comparison, each product is put onto a

common 18 3 18 grid (to roughly match the output of the

land surface and atmosphere models) by finding an ae-

rial average of higher-resolution data [from Broxton

et al. (2016a) and Wang and Zeng (2013) and the ocean

model output) or bilinear interpolation of the land

model output.
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3. Results

a. CFS snow simulations initialized at different times

In general, CFS-RR forecasts initialized earlier in the

winter predict much more snow than simulations ini-

tialized later in the winter. This is because the later

forecasts are generally initialized with less SWE than is

depicted in the earlier forecasts. For example, the mid-

dle panels in Fig. 1 show that across much of the

Northern Hemisphere, forecasts initialized on 1 January

predict higher SWE for 1 April than what is used to

initialize forecasts made on 1 April. In fact, across the

Northern Hemisphere, 1 April SWE from the 1 January

forecasts is more than 2 times as large as that from the

FIG. 1. (middle) Spatial maps of average SWE (1982–2009) on 1 April from the (left) 1 January and (right) 1 April forecasts. (top),

(bottom) SWE time series for each 58 3 58 box indicated in the maps for the forecasts from 1 January (blue), 5 February (magenta),

2March (green), and 1April (red) averaged from 1982 to 2009. The thick black lines in the bottom panels show the time series of observed

SWE values from Broxton et al. (2016a) averaged for the same period.
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1 April forecasts for 53% of the area that is snow cov-

ered on 1 April.

In our recent study (Dawson et al. 2016), we found

that poor SWE initialization in CFS has two primary

causes. First, the snow initialization relies on AFWA

snow depth data, which have too little snow in many

areas. This, by itself, would cause the initialized snow-

pack to be too shallow in the CFS, although this problem

is compounded by the use of a spatially and temporally

constant snow density of 100 kgm23 to convert snow

depth to SWE that is then used for the initialized snow

state. This constant snow density is appropriate for

freshly fallen snow, but can be a factor of 2 or more too

low for snow that is sitting on the ground. Although the

effects of the poor quality of the assimilated AFWA

snow depth data on CFS initialization is partially miti-

gated by the fact that CFS does not assimilate it if the

forecast snow depth is between one-half to twice the

AFWA data (otherwise, it is set to one-half or twice

the AFWA data), the initialized SWE is still derived by

converting snow depth to SWE using the constant snow

density. The net result is that initialized snow depth in

CFS was found to be 13% to 87% of observationally

derived snow depth data, and initialized SWE was be-

tween 3% and 51% of observationally derived SWE

data over select areas over the United States (Dawson

et al. 2016).

At any rate, the forecasts initialized later in the winter

continue to have less SWE for the remainder of the

season than the forecasts initialized earlier, resulting in

earlier snow-free conditions in the later forecasts. The

time series plots in Fig. 1 show that, for selected 58 3 58
areas inNorthAmerica andAsia, forecasts initialized on

1 January have more SWE for the remainder of the

winter than forecasts made on 5 February, which have

more SWE than forecasts made on 2 March, and so on.

As a result, later forecasts not only depict less snow on

the ground but, in many cases, also an earlier melt out

date. Of the six locations shown in Fig. 1, five have

dramatically less SWE in later forecasts than earlier

ones, and snow-free conditions that develop as much as

one month earlier in the later forecasts.

Snow has a strong influence on land–atmosphere in-

teractions through its impact on the amount of radiant

energy that is absorbed, not to mention its large role as a

hydrological storage and its ability to insulate the

ground underneath the snow. Therefore, in the follow-

ing sections, we address this question: How are other

forecast quantities affected by the large difference be-

tween the amount of snow depicted in the earlier fore-

casts (e.g., thosemade on 1 January) and that depicted in

the later forecasts (e.g., those made on 1 April)? In

sections 3b and 3c, we examine these forecast differences

in detail, and in section 3d, we use other data sources to

assess how snow initialization affects the accuracy of

CFS forecasts.

b. The impact on other model variables

Just like there is a large difference of the amount of

snow depicted in earlier versus later forecasts, there are

also large differences in other quantities that would be

directly impacted by the presence of snow on the ground

between the earlier and the later forecasts. For example,

Fig. 2 shows that for the 3-month period (1 April–

30 June), SWE and soil moisture (SM) from the fore-

casts initialized on 1 April (henceforth referred to as

‘‘1 April forecasts’’) are lower than those from the

forecasts initialized on 1 January (henceforth referred to

as ‘‘1 January forecasts’’), while net (incoming minus

outgoing) shortwave radiation (SWn), SH, LH, and T2m

from 1 April forecasts are higher than those from

1 January forecasts. All of these factors are consistent

with what would be expected from having less snow in

1 April forecasts. SWn would be higher because less

shortwave radiation is reflected when there is less snow.

SM would be lower because not only is there less water

contributed from a thinner snowpack but also the snow

melts earlier, allowing more time for the soils to dry out.

SH would be higher because snow-free ground heats up

much more than the snow surface. The impact of having

less snow in 1 April forecasts on LH is more compli-

cated, as LH is higher in 1 April forecasts (than in

1 January forecasts) in northern Eurasia and parts of

eastern North America, but it is the same or lower in

other locations. In general, LH is strongly affected by

net radiation flux (energy source) and soil moisture

(water source). In some areas, LH may be higher be-

cause of the higher SWn (and hence higher net radia-

tion) when the soils are relatively wet; however, in other

areas the soils would dry out faster due to limited

snowmelt, thus reducing LH. Finally, T2m is typically

higher over snow-free surfaces because the ground is

warmer. These influences are discussed in greater detail

in section 4. Note that most of these differences appear

over land, although differences are also present over

the sea ice–covered region (e.g., in the Canadian

Archipelago and the ice margin north of Scandinavia)

due to changes in sea ice extent between 1 January

forecasts and 1 April forecasts.

Most of these quantities diverge substantially between

1 January forecasts and 1 April forecasts during or fol-

lowing the snowmelt period. The first two columns in

Fig. 3 confirm this to be the case for a 58 3 58 box

(located over northwest Russia in Fig. 1). The largest

differences involving all quantities are highest during

the period of snowmelt (May and June; second column

1 NOVEMBER 2017 BROXTON ET AL . 8661



of panels in Fig. 3). In this region, snow melts 2 weeks

earlier on average in 1 April forecasts than in 1 January

forecasts, and this also seems to be reflected in a 1–2-week

lag of increases in SWn, SH, and LH and decreases

in SM that occur during or immediately following

snowmelt (first column of panels in Fig. 3). T2m also

diverges significantly during snowmelt, although it also

appears that biases involving T2m can persist later

into the summer as well (row 6, column 2 of Fig. 3).

The link between the lower SWE and earlier snow-

melt in 1 April forecasts and the higher values of April–

June SWn, SH, LH, and T2m and lower SM in 1 April

forecasts relative to those from 1 January forecasts is

also supported by the fact that there are statistically

significant relationships between the 1 April SWE dif-

ference between 1 April forecasts and 1 January fore-

casts (denoted as ‘‘dSWE on 1 April’’) and the difference

of the above quantities for April–June between the two

forecasts (denoted as ‘‘April–June dX’’ where X could

be SWE, SWn, SM, SH, LH, or T2m). Years when

dSWE on 1 April is larger have higher absolute magni-

tudes of April–June dSWE, dSWn, dSM, dSH, and d2M

than years when dSWE on 1 April is smaller (third

column of Fig. 3). Unlike the other quantities, April–

June dLH shows almost no correlation with dSWE on

1 April. Note that all of the relationships shown in the

third column of Fig. 3, except for that involving LH,

have p values of less than 0.01.

Figure 4 shows that there are many areas across the

Northern Hemisphere with a strong positive relation-

ship between dSWE on 1 April and April–June dSWE:

years with less initialized SWE in 1 April forecasts rel-

ative to 1 January forecasts lead to more negative values

of April–June dSWE (note that this is true over land as

well as over sea ice near the North Pole, as CFS predicts

snow over sea ice). There are also many areas with a

strong relationship between dSWE on 1 April and

April–June dSWn, although the correlation is opposite:

years with less initialized SWE in 1 April forecasts rel-

ative to 1 January forecasts lead to more positive values

of April–June dSWn. There also exist significant corre-

lations between dSWE on 1 April and April–June dSM,

dLH, dSH, and dT2m; however, significant correlations

involving LH have the most limited extent. These

FIG. 2. Spatial maps showing the differences (averaged for all years 1982–2009) of April–June values of (a) SWE, (b) SWn, (c) SM,

(d) SH, (e) LH, and (f) T2m between 1 April and 1 January forecasts. Blue colors indicate that the 1 April forecasts predict lower values

and red colors indicate that the 1 April forecasts predict higher values than 1 January forecasts. SWn is computed as incoming minus

outgoing shortwave radiation and is always positive; upward fluxes of LH and SH are positive. Areas where the differences are not

significant (using a two-tailed two-sample t test with a p value of 0.01) are shaded gray.
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correlations (e.g., between dSWE on 1 April and April–

June dSWn) are readily apparent when considering all

of North America, Eurasia, and the entire Northern

Hemisphere north of 308 (Table 1). Again, April–June

dLH is the only variable discussed so far that is not

significantly correlated with dSWE on 1 April.

Just as energy balance variables differ between

1 January forecasts and 1 April forecasts, other model

quantities also show differences as well. Figure 5 shows

April–June dZ500, dSLP, dSST, and dPPT, averaged

from 1982 to 2009. In general, 1 April forecasts have

higher Z500 in the northern high latitudes, lower SLP

over northern continental areas, higher SSTs in the

northern oceans, and a northward displaced precipi-

tation band [i.e., the intertropical convergence zone

(ITCZ)]. Certainly not all of these changes between the

FIG. 3. (left) Average (from 1982–2009) seasonal progression (fromApril toAugust) of quantities from the 1 January (blue) and 1April

forecasts (red) for the 58 3 58 box located over the northernRockies in Fig. 1. (middle)Difference between the red and blue lines in the left

column. (right) April–June mean differences of these variables between 1 April and 1 January forecasts in each year plotted against the

1 April SWE mean difference in the same year from 1982 to 2009 along with the associated R2 (squared correlation coefficient) and p

values for each linear regression.
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1 January forecasts and 1 April forecasts can be attrib-

uted to changes in SWE, but some of these changes

could be related.

While it is straightforward to understand the direct

impact of dSWE on energy balance variables such as

SWn and SH (as mentioned earlier), it is somewhat

more difficult to attribute the differences in other

variables, particularly those occurring outside of grid

boxes with snow. For example, the effects of snow

on the ground may influence atmospheric circulation

downstream of the snow, and furthermore its influ-

ence may be diluted by other effects. As a result, there

are generally poor correlations between dSWE and

many of these variables on a grid box by grid box basis.

As an example, Fig. S1 in the supplemental material

shows that there are many small areas with a sig-

nificant relationship between dSWE on 1 April and

April–June difference in precipitation between the

1 April and 1 January forecasts (April–June dPPT).

However, these relationships are not systematically

positive or negative over large areas: in some places,

dSWE on 1 April is correlated with less April–June

dPPT, while in others it is correlated with more April–

June dPPT. As a result, considering all of North

America, Eurasia, and the entire Northern Hemisphere

north of 308 (Table 1), there are weak correlations be-

tween dSWE on 1 April and April–June dPPT. Corre-

lations between dSWE on 1 April and April–June dPPT

FIG. 4. Spatial maps showing the correlations (from 1982–2009) between dSWE on 1 April and April–June (a) dSWE, (b) dSWn,

(c) dSM, (d) dSH, (e) dLH, and (f) dT2m between the 1 January and 1 April forecasts. The map colors represent the Pearson correlation

coefficient (r) between each relationship. Areas where jrj , 0.4 (corresponding to a p value of ;0.035) are shown as white.

TABLE 1. Average Pearson correlation coefficients (r) between

area-averaged dSWE on 1 April and area-averaged April–June

quantities (explained in the text) over land areas north of 308N. The

first column shows these correlations considering all land areas north

of 308N. The second column shows these correlations over just the

North American continent (not including Greenland, but including

islands in the Canadian Archipelago). The third column shows these

correlations over just the Eurasian continent. Correlations that we

consider to be statistically significant using the same criteria as in the

rest of the manuscript (r . 0.4, p , ;0.035) are shown in bold.

Entire Northern

Hemisphere North America Eurasia

dSWE 0.91 0.81 0.76
dSWn 20.78 20.70 20.66

dSM 0.79 0.74 0.57

dSH 20.73 20.74 20.65

dLH 0.32 20.04 20.18

dT2m 20.77 20.51 20.58

dZ500 20.62 20.35 20.48

dSLP 0.29 0.13 0.35

dPPT 0.10 0.33 20.03
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in the tropics, including the apparent northward shift

of the ITCZ shown in Fig. 5, are equally as weak

(not shown).

There is, however, a stronger correlation between

dSWE on 1 April and April–June dZ500 (change in

Z500 between 1 January forecasts and 1 April forecasts)

(Table 1). Just likeApril–June dT2m,April–June dZ500

is negatively correlated with dSWE on 1 April. Physi-

cally the warmer temperatures associated with the

smaller SWE in 1 April forecasts translate to greater

geopotential thicknesses between the surface and

500hPa and hence overall greater Z500. The correlation

between dSWE on 1 April and April–June dSLP

(change of SLP between 1 January forecasts and 1 April

forecasts) is also greater than that for dPPT, but both are

not significant (Table 1). The correlation (0.2) between

dSWE on 1 April and April–June values of the North

Atlantic Oscillation (computed as the difference be-

tween SLP for the CFS grid box closest to the Azores

and that closest to Iceland, and representing an index of

atmospheric circulation over the middle and high lati-

tudes) is not significant either.

This suggests that there are also other factors besides

SWE that are partly responsible for changes in some of

the model variables between the 1 January and 1 April

forecasts. Indeed, Fig. 5 shows that the warmth signal in

the later forecasts, which, over land, seems to be caused by

too little snow, extends significantly over the ocean in the

Northern Hemisphere. Furthermore, there is a significant

northward shift of the ITCZ in the later forecasts (relative

to the earlier forecasts) that does not seem to correspond

well with changes in dSWE. Perhaps, there are also sys-

tematic differences between the forecasts in terms of

ocean state that are also causing enhanced warmth in the

later forecasts over oceans (though at this time it is unclear

if this is linked with the northward shift of the ITCZ in

later forecasts). However, this does not necessarily mean

that there are connections between ocean state and snow

or other model variables over land. These connections

(betweenApril–June dSST, or the change in SST between

1 January forecasts and 1 April forecasts, dSWE on

1 April, and the change in other model variables during

April–June) are discussed next.

c. The role of the ocean

Although there is good physical justification about the

link between differences in SWE and differences in SWn,

SM, LH, SH, and T2m and, to a lesser degree, Z500 and

PPT during the snowmelt period, differences in the ocean

state during the forecast period could also influence these

variables (especially T2m and Z500) as well. Figure 5c

shows that 1 April forecasts generally have higher April–

June SSTs in the northern high latitudes than 1 January

forecasts. However, Fig. 6a shows that there are virtually

no areas where April–June dSWE is significantly corre-

lated with the average difference in April–June SSTs

between 1 January forecasts and 1April forecasts (April–

June dSST) in the NorthernHemisphere (north of 308N).

Figures 6b–d also show that there are few areas over land

where April–June dT2m is significantly correlated with

the average April–June dSST in the Northern Hemi-

sphere. These results suggest that over land, the effect of

FIG. 5. Spatial maps showing the differences (averaged for all years from 1982 to 2009) of April–June values of

(a) Z500, (b) SLP, (c) SST, and (d) PPT between 1 April and 1 January forecasts. Blue colors indicate that 1 April

forecasts predict lower values and red colors indicate that the 1 April forecasts predict higher values than 1 January

forecasts. Areas where the differences are not significant (using a two-tailed two-sample t test with a p value of 0.01)

are shaded gray.
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the reduced amount of snow in the 1 April forecasts (i.e.,

dSWE on 1 April) is much more important than SST

differences between 1 April forecasts and 1 January

forecasts. Note, however, that this does not mean that the

ocean state itself does not affect these variables. For ex-

ample, there is a stronger connection between SST

anomalies (i.e., the difference with respect to the 1982–

2009 climatology) and T2m anomalies (for April–June,

computed from the 1April forecast) than betweenApril–

June dSST and April–June dT2m (cf. Figs. 6b and 6f).

Figure 6 also shows that the same is true for SWE, PPT,

and z500.

The above analysis links the ocean state for the entire

Northern Hemisphere to variables such as SWE and

T2m. However, because the linkage between the ocean

and these variables is indirect over land (e.g., through

teleconnections), we also focused on smaller areas

(Fig. S2 in the supplemental material) with high in-

terannual variability of SSTs (some of which are known

to have connections with atmospheric teleconnection

patterns). Figures S3–S7 show the relationship between

April–June dSWE, dT2m, dPPT, and dZ500 with the

average April–June dSST over these small areas. Again

themain conclusion remains the same: April–June dSST

differences between the 1 April and 1 January forecasts

are minimally correlated with April–June dSWE, dT2m,

dPPT, and dZ500 over most land areas, while SST

anomalies have a larger correlation with T2m, Z500,

and, to a lesser degree, PPT and SWE anomalies based

on the 1 April forecasts. Note also that the highest cor-

relations between SST anomalies and anomalies of

SWE, T2m, and dZ500 over continental regions in the

Northern Hemisphere occur for the case when SSTs are

averaged for the Northern Hemisphere north of 308N
(Fig. 6) instead of for the smaller regions (Figs. S3–S7 in

the supplemental material).

Furthermore, we also examined whether the di-

vergence of the April–June forecast values between

1 January forecasts and 1 April forecasts (i.e., the dif-

ferences that are shown in Fig. 2) are more or less

prominent under different SST regimes. Overall, we find

that there is relatively little difference. For example,

Table 2 (columns 1–3) shows that over land at high

latitudes, dSWE on 1 April is negative and of about the

same magnitude for years with a positive Pacific decadal

oscillation (PDO) index (Mantua et al. 1997) as for years

with a negative PDO index. Likewise, dSWn, dSH, and

dT2m forApril–June are positive, and of about the same

FIG. 6. (top) Pearson correlation coefficient (r) betweenApril–June dSST (for theNorthernHemisphere north of 308N) andApril–June

(a) dSWE, (b) dT2m, (c) dPPT, and (d) dZ500. (bottom) Pearson correlation coefficient (r) between April–June SST anomalies (for the

NorthernHemisphere north of 308N) and (e) April–June SWE anomalies, (f) T2m anomalies, (g) PPT anomalies, and (h) Z500 anomalies

based on the 1 April forecasts. Areas where jrj , 0.4 (corresponding to a p value of ;0.035) are shown as white.

TABLE 2. Columns 1–3 show averaged differences of quantities for April–June over land areas north of 608N between 1 January

forecasts and 1April forecasts for all years from 1982–2009, for years when the average springtime (April–June) PDO index was above 0.5

(PDO 1 years) (for a total of 14 yr), and when it was below 20.5 (PDO 2 years) (for a total of 6 yr). Column 4 shows the correlation

squared (R2) between each of the differences (e.g., April–June dSWE) and the springtime PDO index itself. For comparison, column 5

shows R2 between each of the differences and the aerially averaged dSWE on 1 April.

All years PDO1 PDO2 R2 w/ PDO R2 w/ dSWE

dSWE (mm) 246.72 244.32 254.09 0.14

dSWn (Wm22) 15.13 14.15 18.22 0.11 0.67

dSM (unitless) 20.02 20.02 20.03 0.10 0.40

dSH (Wm22) 7.16 6.83 8.82 0.09 0.51

dLH (Wm22) 1.72 1.76 1.25 0.06 0.01

dT2m (8C) 2.60 2.39 2.93 0.09 0.60
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magnitude, regardless of whether they are grouped ac-

cording to PDO. April–June dSM is always slightly

negative, and April–June dLH is always slightly positive

over land at high latitudes. Furthermore, there is a rel-

atively low correlation between the PDO index and any

of these measures (Table 2, column 4). For comparison,

the correlation between dSWE on 1 April and dSWn,

dSM, dSH, dLH, and dT2m for April–June are much

higher (Table 2, column 5). We performed similar ana-

lyses with other ocean indices as well [e.g., El Niño–
Southern Oscillation (ENSO) index; not shown], but in

all cases, the model differences are not much influenced

by the SST configuration.

The fact that dT2m over land is affected much more

strongly by dSWE than by dSST underscores the need to

consider the important role of snow as a slow varying

component of the Earth system that could contribute

skill to subseasonal-to-seasonal (S2S) prediction. As has

been pointed out in some previous studies (e.g., Orsolini

et al. 2013; Jeong et al. 2013), this is analogous to the

well-known soil moisture–atmosphere coupling that has

been identified in previous studies to provide pre-

dictability in some ‘‘hot spots’’ (e.g., Koster et al. 2004).

Here, we suggest that proper initialization of the snow-

pack could be very important for seasonal prediction

during the spring–summer transition in the snowy

regions.

d. How does snow initialization affect the quality of
CFS forecasts?

The CFS forecasts initialized earlier in the snow sea-

son appear to be better in terms of their prediction of

SWE than those initialized later in the snow season,

largely for the reasons discussed in section 3a. When

compared to the reference snow dataset developed by

Broxton et al. (2016a), it is clear that forecasts initialized

later in the year predict far too little SWE (bottom

panels of Fig. 1). Of the three boxes over the United

States shown in Fig. 1 (from west to east, centered in

Idaho, Wisconsin, and Maine), the Idaho and Maine

boxes show the biggest underestimations by the later

forecasts, although the Wisconsin box also shows a

substantial underestimation for later forecasts. For ex-

ample, the 1 March forecasts initialize SWE to be 11%,

10%, and 26% of observed SWE (from the UA data) in

the Idaho, Maine, and Wisconsin boxes, respectively.

These results agree with our previous studies (Broxton

et al. 2016b; Dawson et al. 2016), which find that there is

not enough SWE in the CFSR (which provides initial

conditions for CFS-RR) and that SWE initialization in

the operational CFS (which is the same as the procedure

used in CFS-RR) has serious deficiencies. In general,

1 January forecasts tend to be better at representing the

SWE climatology depicted in the Broxton et al. (2016a)

dataset.

Note that although global SWE datasets exist, these

data are not used here to evaluate the CFS results

because we have found the quality of these data to be

low. For example, we evaluated SWE data based on

coarse-scale (.0.258) atmospheric reanalyses and

the Global Land Data Assimilation System and found

that all of these products severely underestimate SWE

in areas with high SWE (Broxton et al. 2016b). Our

ongoing study finds that this underestimate is also true

for satellite remotely sensed SWE. In addition, we

have identified other limitations with these data, such

as the poorer quality of the remotely sensed data

in areas with trees, as well as the especially large

underestimates of SWE in mountainous areas in all

datasets.

While earlier forecasts have more realistic values of

SWE, later forecasts perform much better in terms of

T2m. Figure 7b shows that when compared with the

Wang and Zeng (2013) T2m data over land, 1 January

forecasts have widespread April–June T2m biases

throughout the Northern Hemisphere; in particular,

forecasted temperature is far too low, especially over

northern Eurasia. Conversely, 1 April forecasts simulate

April–June T2m to be much warmer (as shown in the

bottom row of Fig. 3), and hence have much smaller T2m

biases (Fig. 7c). The later forecasts also have much higher

skill than earlier ones as there is amuch higher correlation

between T2m for this period predicted from the 1 April

forecasts and the Wang and Zeng (2013) data than that

between the 1 January forecasts and the Wang and Zeng

(2013) data (Figs. 7d,e). Some of this is simply a reflection

of better performance for shorter lead times, but changes

in the initial snow state also play some role, as there are

significant correlations between the difference between

howwell the forecasts relate to theWang andZeng (2013)

data (measured as the difference between Figs. 7d and 7e)

and dSWEon 1April (Fig. 7f). Note in Fig. 7f that areas of

positive correlation covermuch of the snowy region of the

Northern Hemisphere, although in most cases the

strength of these correlations is weaker than the r 5 0.4

cutoff (corresponding with a p value of ;0.035) that we

consider to be statistically significant, and hence are

shaded as white.

4. Discussion and conclusions

Because SWE in CFS-RR (and CFSv2) is initialized

with external data sources instead of cycled between

forecasts (i.e., initialized SWE for a given forecast is not

the same as SWE that is predicted by a previous fore-

cast), there are differences between the evolution of
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SWE between earlier and later forecasts. Notably, in

many places, SWE is initialized to bemuch lower in later

forecasts than is simulated in the earlier forecasts, and

therefore the subsequent SWE is lower as well (Fig. 1).

In our previous studies (e.g., Dawson et al. 2016), we

have found that SWE initialization in NCEP’s opera-

tional models (including CFS) is too low. The same can

be said of the CFS-RR. Comparison with observed SWE

data over the United States indicates that SWE initial-

ized in later forecasts tends to be too low, even worse

than SWE predicted from earlier forecasts (Fig. 1). In

other words, CFS-RR predicts SWE better when it is

free-running from an initial state early in the season than

from an initial state late in the season.

These SWE differences translate to forecast differ-

ences in other quantities as well. For example, April–

June T2m from the 1 January forecasts is over 28C colder

on average over much of northern Eurasia than that

from the 1 April forecasts (Fig. 2). This includes areas

where April–June SWE is much higher in the 1 January

forecasts than the 1 April forecasts. Furthermore, there

are also significant correlations between dSWE on

1 April and April–June dT2m (Fig. 4). For instance,

years with a highly negative dSWEon 1April (i.e., much

more snow in the 1 January forecasts) have a higher

April–June dT2m (i.e., much colder in the 1 January

forecasts), indicated by the negative correlation shown

in Fig. 4f. These correlations also exist for other forecast

quantities as well (e.g., SWnet, SM, SH, Z500). We

found some connections between dSWE on 1 April and

April–June dPPT, although in general this connection is

inconsistent over large areas (e.g., positive dSWE on

1 April may be correlated with positive April–June

dPPT in some areas, but it may be correlated with

negative April–June dPPT in adjacent areas).

The connections that we found between SWE differ-

ences and differences involving other forecast quantities

in the earlier versus later forecasts generally make

physical sense. It would appear that the main impact of

having less SWE in the later forecasts is having earlier

and smaller snowmelt in the later forecasts. This greatly

impacts both the albedo of the land surface as well as the

soil moisture. The lower albedo in the April–June pe-

riod that is associated with earlier snowmelt translates to

higher SWn, as less incoming radiation is reflected.

More radiation is absorbed by the land surface, which in

turn heats it, and affects the turbulent exchange of en-

ergy with the atmosphere. This is why sensible heating is

FIG. 7. (a) The 28-yr average of April–June T2m (K) for Northern Hemisphere land areas based on the Wang and Zeng (2013) data.

(b) The 28-yr average difference inApril–JuneT2m (K) between the 1 January forecasts and theWang andZeng (2013) data. (c)As in (b),

but using the 1 April forecasts. (d) Pearson correlation coefficient (r) between detrended April–June T2m predicted from 1 January

forecasts and from theWang and Zeng (2013) data based on all 28 yr of data. (e) As in (d), but using the 1 April forecasts. (f) Correlation

coefficient between dSWE on 1 April and the increase in forecast skill between 1 January forecasts and 1 April forecasts [i.e. (e)2 d)]. In

(d)–(f), areas where jrj , 0.4 (corresponding to a p value of ;0.035) are shown as white.
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affected in the same way: lower SWE translates into

higher sensible heat flux, which increases near-surface

temperatures. The other main impact of having less

SWE in the later forecasts (and earlier and smaller

snowmelt) is that less water enters the soil earlier in the

season (hence affecting soil moisture). In many areas,

this translates to drier soils from April–June, leading to

reduced latent heat flux (Figs. 2 and 4). In other areas

where the soil is not dry (e.g., in the northern high lati-

tudes), however, the increased SWn leads to increased

latent heat flux.

The impact of snow on quantities (e.g., PPT) over

regions not covered with snow has been emphasized in

some previous studies. For instance, high snow years

over the Himalayan–Tibetan Plateau (HTP) are found

to have a delayed monsoon onset in the Indian sub-

continent region (ISR) (Saha et al. 2013; Senan et al.

2016). The positive correlations between dSWE on

1 April and April–June dZ500 in our study suggest that

this snow–monsoon connection is certainly possible

through atmospheric teleconnection. Quantitatively,

however, the correlations between SWE patterns and

PPT patterns are low (Fig. S1) despite the large differ-

ences between the 1 January and 1 April PPT forecasts

in some areas (Fig. 5). We have also further tested the

connection between dSWE on 1April over theHTP and

dPPT in the ISR. Although 1 April forecasts generally

have lower SWE over the HTP and higher PPT over the

ISR than do 1 January forecasts, we do not find a sta-

tistically significant correlation between dSWE on

1 April over the HTP and May dPPT over the ISR

(Fig. S8), which is around the time of the onset of the

Indian monsoon. Similarly, the correlation between the

1 April SWE anomaly over the HTP and May PPT

anomaly over the ISR (based on the 1 April forecasts) is

not statistically significant (although, interestingly, we

do find a significant correlation between 1 April SWE

anomaly over the HTP and April PPT anomaly over

the ISR).

Although much of the impact on especially the energy

balance variables is primarily due to snow, the ocean

potentially has some impact aswell. In particular, some of

the warmth signal, whereby later forecasts are warmer

than earlier forecasts, which extends out over the oceans

away from the continents might be due to inconsistencies

in ocean state between earlier and later forecasts. Indeed,

wefinda connectionbetweenSSTanomalies andanomalies

of T2m, Z500, and, to a much lesser degree, PPT and SWE

based on the 1 April forecasts (e.g., the interannual

variability of Northern Hemisphere SSTs is significantly

correlated with the interannual variability of T2m

over much of Eurasia; Fig. 6). However, there are

far fewer areas of widespread significant correlations

involving dSST versus dT2m, dZ500, dPPT, and dSWE,

especially in the interiors of continents, than with dSWE

(Figs. 4 and 6). In other words, dSST has much less im-

pact than dSWE (on 1 April) on the seasonal forecasts

for April–June, despite the strong correlation of the

interannual variability of SST in April–June with that of

other quantities.

Furthermore, SST-based indices such as PDO and

ENSO indices are not very highly correlated with in-

terannual variability of April–June dT2m, dZ500, dPPT,

and dSWE (between the 1 January forecasts and 1 April

forecasts), certainly when compared with the correla-

tions involving dSWE on 1 April (Table 2). The greater

impact of dSWE than dSST (on 1April) on dT2m during

the spring–summer transition in many snowy areas is

analogous to the well-known impacts of SM on the at-

mosphere in hot spots around the globe (e.g., Koster

et al. 2004). This also suggests the major role of snow-

pack in seasonal forecasting during the spring–summer

transition, and the importance of proper initialization of

snow in seasonal prediction models.

A primary effect of having less SWE in the later

forecasts than the earlier forecasts is that T2m in the

later forecasts shows less of a cold bias (as well as higher

skill) than it does in the earlier forecasts (Fig. 7). How-

ever, as mentioned earlier, SWE for this period is worse

in later forecasts than in earlier forecasts. This mismatch

suggests that the better temperature forecasts in the

later forecasts occur for the wrong reasons (i.e., they

occur despite the worse SWE forecasts). At the same

time, this indicates that simply fixing the SWE initiali-

zation, without fixing othermodel deficiencies that allow

the mismatch to occur in the first place, will likely not

improve or even worsen model forecasts.

In general, this issue indicates deficiencies in the at-

mospheric component (e.g., radiative transfer) and/or

land component (e.g., snow parameterizations, turbu-

lence under stable conditions) in CFSv2. Previous studies

have identified the CFS treatment of albedo over snow-

covered surfaces to be problematic in different environ-

ments with different vegetation characteristics (Livneh

et al. 2010; Wang and Zeng 2010; Wang et al. 2010). This

deficiency could lead to the early snowmelt in the 1 Jan-

uary forecasts and 1 April forecasts, but it would not lead

to the better April–June T2m forecasts from a worse

snow initialization (on 1 April) by itself. A more likely

reason is the CFS deficiencies in the atmospheric pro-

cesses (e.g., radiative transfer) that provide compensating

errors for the initialized shallow snowpack (in the 1 April

forecasts) and, to a lesser degree, for the CFS deficiencies

in the snow parameterization. Other aspects governing

the atmospheric circulation (which also controls the

temperature field) may also be the culprit. The solution
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requires the collaboration of CFS developers with the

research community to improve the snow initialization in

CFS first, followed by the improvement of snow param-

eterization in its land component, and then most impor-

tantly for research-to-operation transition, followed by

the revision/improvement of processes in the CFS at-

mosphere component (including radiative transfer,

clouds, and aerosols).

Finally, as mentioned in the introduction, this study

provides justification for a rigorous model sensitivity

study in the future. For instance, to isolate the snow

initialization impact on CFS forecasting from the ocean

impact (i.e., to determine which factor most influences

forecast quantities in different regions), CFS could be

rerunwith three different initial conditions on 1April: 1)

default 1 April initialization of atmosphere, ocean, and

land; 2) replacing the default land state by that on

1 April from the 1 January forecast; and 3) replacing the

default ocean state by that on 1April from the 1 January

forecast. Here, it was advantageous to use the large

catalogue of already generated model quantities from

NCEP as it is much less time consuming than full model

sensitivity tests. Furthermore, sensitivity tests with the

initializations 2 and 3 above also have difficulties of their

own, such as the model adjustment of atmosphere,

ocean, and land components that are not in equilibrium

at the initial state. Studies similar to our analysis here

can be done for operational models at other weather and

climate prediction centers to better direct their future

model sensitivity studies as well. Together, these sensi-

tivity tests using different operational models would

further quantify the role of snowpack in seasonal fore-

casting during the spring–summer transition.
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